Wednesday, 13 July 2016

Why football, not chess, is the true final frontier for robotic artificial intelligence

Daniel Polani, University of Hertfordshire

The perception of what artificial intelligence was capable of began to change when chess grand master and world champion Garry Kasparov lost to Deep Blue, IBM’s chess-playing program, in 1997. Deep Blue, it was felt, had breached the domain of a cerebral activity considered the exclusive realm of human intellect. This was not because of something technologically new: in the end, chess was felled by the brute force of faster computers and clever heuristics. But if chess is considered the game of kings, then the east Asian board game Go is the game of emperors.

Significantly more complex, requiring even more strategic thinking, and featuring an intricate interweaving of tactical and strategical components, it posed an even greater challenge to artificial intelligence. Go relies much more on pattern recognition and subtle evaluation of the general positions of playing pieces. With a number of possible moves per turn an order of magnitude greater than chess, any algorithm trying to evaluate all possible future moves was expected to fail.

Until the early 2000s, programs playing Go progressed slowly, and could be beaten by amateurs. But this changed in 2006, with the introduction of two new techniques. First was the Monte Carlo tree search, an algorithm that rather than attempting to examine all possible future moves instead tests a sparse selection of them, combining their value in a sophisticated way to get a better estimate of a move’s quality. The second was the (re)discovery of deep networks, a contemporary incarnation of neural networks that had been experimented with since the 1960s, but which was now cheaper, more powerful, and equipped with huge amounts of data with which to train the learning algorithms.
The combination of these techniques saw a drastic improvement in Go-playing programs, and ultimately Google DeepMind’s AlphaGo program beat Go world champion Lee Sedol in March 2016. Now that Go has fallen, where do we go from here?

The future of AI is in physical form

Following Kasparov’s defeat in 1997, scientists considered that the challenge for AI was not to conquer some cerebral game. Rather, it needed to be physically embodied in the real world: football.
Football is easy for humans to pick up, but to have a humanoid robot running around a field on two legs, seeing and taking control of the ball, communicating under pressure with teammates, and all mostly without falling over, was considered completely out of the question in 1997. Only a handful of laboratories were able to design a walking humanoid robot. Led by Hiroaki Kitano and Manuela Veloso, the ambitious goal set that year was to have by 2050 a team of humanoid robots able to play a game of football against the world champion team according to FIFA rules, and win. And so the RoboCup competition was born.

The RoboCup tournament reached its 20th year in Leipzig this year. Its goal has always been to improve and challenge the capacity of artificial intelligence and robotics, not in the abstract but in the much more challenging form of physical robots that act and interact with others in real time. In the years since, many other organisations have recognised how such competitions boost technological progress.

The first RoboCup featured only wheeled robots and simulated 2D football leagues, but soon leagues that permitted Sony’s four-legged AIBO robot dogs were introduced and, since 2003, humanoid leagues. In the beginning, the humanoids’ game was quite limited, with very shaky robots attempting quivering steps, and where kicking the ball almost invariably caused the robot to fall. In recent years, their ability has significantly improved: many labs now boast five or six-a-side humanoid robot teams.

No ordinary ballgame

In order to push competitors on to reach the goal of a real football match by 2050, the conditions are made harder every year. Last year, the green carpet was replaced by artificial turf, and the goalposts and the ball coloured white. Thsi makes it harder for robots to maintain stability and poses a challenge of recognising the goals and ball. So while the robots may seem less capable this year than the year before, it’s because the goalposts are moving.

The tasks involved in playing football, although much more intuitive to humans than chess or Go, are a major challenge for robots. Technical problems of hitherto unimaginable complexity have to be solved: timing a kick while running, identifying the ball against a glaring sun, running on wet grass, providing the robot with sufficient energy for 45 minutes’ play, even the materials that go into constructing a robot can’t disintegrate during a forceful game. Other problems to be solved will define important aspects of our life with robots in the future: when a robot collides with a human player, who can take how much damage? If humans commit fouls, may a robot foul back?

RoboCup offers up in miniature the problems we face as we head towards intelligent robots interacting with humans. It is not in the cerebral boardgames of chess or Go, but here on the pitch in the physical game of football that the frontline of life with intelligent robots is being carved out.

The Conversation
Daniel Polani, Professor of Artificial Intelligence, University of Hertfordshire
This article was originally published on The Conversation. Read the original article.

Monday, 11 July 2016

China completes world's largest radio telescope – raising hopes of finding new worlds and alien life

Elias Brinks, University of Hertfordshire

Boasting half a kilometre in diameter, it is the largest telescope dish in the world to date. The 500-metre Aperture Spherical Radio Telescope (FAST), which has been under construction in the Guizhou Province in south-west China since 2011, was completed on July 3 when the final panel was lowered into position. Excitingly, this new eye on the sky will be able to search for new exoplanets, gravitational waves and even signals from extraterrestrial civilisations.

FAST handsomely beats the Arecibo telescope in Puerto Rico into second place, with its 305-metre diameter dish. But the two giant telescopes are similar. Each uses natural geological depressions in the landscape known as “karst”, giant sinkholes created by nature, that fit the rough outline of the telescope dish. Both are static structures in the sense that the dish only looks straight up, staring at the zenith. They therefore depend on the rotation of the Earth for different parts of the sky to come into view over the course of the day. To follow an object for a few hours at a time, the detector, which is suspended above the centre of the dish, can be shifted. This is much akin to moving one’s head in front of a mirror left to right in order to scan what lies behind.

But while the Arecibo detector cage hangs in a fixed position, the FAST telescope uses an ingenious mechanism based on cables and pulleys that allows it to position the entire detector cage anywhere across the face of the dish. Another major difference is that Arecibo’s dish is of a fixed, spherical shape whereas FAST uses an advanced system of cables and actuators that deform the spherical mirror, much like a rubber sheet, to create a parabolic shape. This allows a two to three times larger part of the sky to be accessed than is possible with Arecibo.

Arecibo observatory aerial view. wikimedia

Thanks to its innovative design, FAST can track objects passing overhead for longer than Arecibo. It is also expected to be twice as sensitive and have five to ten times the surveying speed of Arecibo.

Listening to the universe

Even though construction is completed, Chinese scientists and engineers still have a huge task to make the system reach the design specifications and ultimately deliver new and exciting scientific results. As the name already suggests, this is a radio telescope, picking up radiation from the cosmos at wavelengths of between 0.1 meter and 4 meters This is light with a wavelength a million times or so longer than our eyes can detect. Not surprisingly, the sky at these long wavelengths looks vastly different which is exactly why observations at radio wavelengths reveal information that is not accessible with optical telescopes.

The long wavelength does have problem though, which is that the resolution, or sharpness of an image, decreases with increasing wavelength. To compensate for this, the telescope aperture has to increase, which is the main reason for FAST’s giant proportions. Despite its size, the resolution will at best be several times worse than that of the human eye, and 400 times worse than the image quality routinely achieved by ground-based optical telescopes. There is a benefit, however, which is that the large size of the dish makes for a giant “bucket” to collect emission coming from the cosmos, making it a sensitive detector able to pick up weak signals. So “bigger is really better”, especially when it comes to radio telescopes.

FAST is optimised to detect signals coming from neutral hydrogen, the most abundant element in the universe. This is found in diffuse clouds in the interstellar medium that fills the space between the stars in galaxies. This is the raw material from which stars form. FAST will be able to make a complete census down to much lower levels of the hydrogen content of the local universe than has been possible so far. How much hydrogen is found, where and in what kind of agglomerations, will have direct consequences for how scientists think the universe evolved from its earliest phase and how galaxies formed and have continued to grow with time.

The planet Jupiter emits metre-wave radiation. Thanks to its exquisite sensitivity Jupiter-like planets may be detected with FAST around around stars in the neighbourhood of the sun. Fascinatingly, it can also eavesdrop on distant worlds to search for intelligent life (a technique known as SETI). FAST is also expected to detect thousands of pulsars – rotating, dead stellar remnants of old, burned-out stars that emit a beam of radiation – in the Milky Way.

Scientists can use the incredibly stable pulses these objects emit as high-precision clocks to reveal gravitational waves from massive black holes or even from the Big Bang. This is because a gravitational wave passing through space will momentarily change distances between pulsars resulting in ever so slight changes in the arrival time of their pulses.

FAST complements and extends the capabilities of other leading radio telescopes, such as the Very Large Array in New Mexico, US. But eventually it is expected to be overtaken by the Square Kilometre Array (SKA), an international project in which China is a full partner. SKA combines a huge collecting area some four times larger than FAST with superb imaging capabilities, rivalling that of space-based optical telescopes.

The Conversation
Elias Brinks, Professor of Astronomy, University of Hertfordshire
This article was originally published on The Conversation. Read the original article.

Friday, 1 July 2016

Clearing – What’s it all about?

Clearing used to be for students who had done badly and were desperately searching for a university, any university, who would take them. All the action happened on A level results day leading to a frantic time for students and university staff alike. 

It's very different these days. Why? Well, because UCAS opens Clearing early in July. That way anyone who was unlucky enough not to receive any offers from their five choices can have another bite at the cherry. It recognises that a growing number of 18 year olds are taking BTEC qualifications and these results become available from early July. It also reflects the fact that Clearing is becoming a second application cycle. The debate over fees and whether a university education represents good value for money is leading some 17 and 18 year olds to question whether a degree is the right choice for them. A growing number are deciding late that they want to apply to university and are applying for the first time through Clearing.

Call the Clearing Hotline on 0300 303 6300

Now, don't get me wrong, the day A level results come out (this year it is the 18th August) is still a very busy day. If students find that they have been placed into Clearing, because their firm and insurance universities have not accepted their grades, they will still need to find a place through Clearing if they want to go to university this year.

So if you find yourself going through Clearing on A level results day, here are a few tips:-
  • Don't panic! – There are still thousands of places left at universities that will be happy to accept your grades
  • Get organised – Have the details of all your qualifications (A2, AS, GCSEs, etc.) to hand, get a pen and paper ready and make sure your mobile is charged up, or better yet, use a landline – you don't want to get cut off during an important call!
  • Research – Details of Clearing vacancies can be found on UCAS and on university websites. A good starting point could be the three universities you applied to and rejected during the main application cycle as you already know quite a bit about them
  • Shop around – You don't have to accept the first Clearing offer you receive. Get offers from a couple of universities and then take your time and research the university and course. Go to a Clearing Open Day to really find out what it's like. Find out about other incentives, for example whether the university will guarantee your accommodation like the University of Hertfordshire does.
Lastly, remember that universities are there to help you with the decision making process, feel free to ask questions and get advice. We have a handy step-by-step guide to Clearing on our website and you are welcome to call us in the Student Centre (+44 (0)300 303 6300) to discuss your options. We look forward to hearing from you!

Julie Kelly
Head of Student Centre